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Abstract

This paper addresses a specific issue of time accuracy in the calculations of external

aerodynamic problems. The class of problems that is discussed here consists of inviscid

compressible subsonic flows. These problems are inherently governed by a convective equa-

tion. This is readily seen by linearizing the Euler equation which results in a convective

wave equation for the pressure. A key mathematical issue that is not well understood in

literature for these problems is the long time behavior of the solution. This is an important

aspect if one desires transient calculations of problems governed by the Euler equations or

its derivatives such as the small disturbance equations or the potential formulations of the

gust problem. In particular, difficulties arise for two-dimensional problems. In two dimen-

sions the time decay rate of solutions of the wave equation is known to be rather slow. This

applies to the convective wave equation as well. The consequences are rather severe if one

focuses on the time accuracy of solutions of problems governed by the Euier equations.

In concert with the above mentioned problem, exterior flows require proper modeling

of boundary conditions. In particular, computations of these flow problems require trun-
cation of infinite regions into finite regions with the aid of artificial boundaries. On these

boundaries one must impose boundary eonditlons that are consistent with the physics as
well as guarantee consistency with the original problem posed in the unbounded region.

Moreover, these boundary conditions must have accuracy in time as well as space. Some of

the well-known procedures do address the issues of spatial accuracy and have remedy for
these conditions. Unfortunately, these procedures do not address the time accuracies, which

are crucial for the transient problems. Our treatment is discussed in detail and examples

are presented to verify the results.

'Research for the author was supported by the National Science Foundation, DMS-8921189 and by ICOMP,

NASA Lewis Research Center (work funded under NASA Cooperative Agreement NCC3-233).



1 Introduction

This paper deals with unanswered aspects of long time behavior of unsteady flow computations

in two dimensions. Many of the available codes such as the FLO series deal with steady flows

and their accuracies are well tested. State of the art grid generations and even complicated

geometrical structures are included in these codes. While these developments reflect the ma-

turity of computational fluid dynamics, the goal of the field is to understand aerodynamics in

its entirety which includes the unsteady phenomena. It is important to understand this phe-

nomena if one is to achieve successful calculations on biproducts such as far field acoustics. A

common tendency is to use steady fluid dynamics codes for unsteady calculations. Such cal-

culations yield either unsatisfactory resolution of time accuracies or break down in finite time.

The classical problem of subsonic-transonic compressible flows past a cylinder is an unresolved

issue for this very reason. For example one can see a documentation of such computations in

[15]. The key reason why this is difficult is due to lack of understanding in the modeling of

far field boundary conditions that naturally plays an important if not an essential role in these

computations.

It is an open issue whether one can predict solutions of unsteady Euler or Navier-Stokes

equations in a satisfactory manner. A recent paper by [2] deals with numerical computations of

viscous flows past a circular cylinder. The modeling of required far field approximate pressure

condition was obtained using a theory proposed by [1] which is accurate for high frequencies.

This limits the solutions to be accurate for short times. They also proposed approximate

boundary conditions using characteristic variables which works better than the above said

pressure boundary condition. It is not clear if these conditions mantain time accuracy of the

solution and it needs to be addressed. This concern forms the basis of this paper. It should be

emphasized the workers realized similar difficulties ahead of time and concentrated on linearized

Euler equations and in the frequency domain. Namely, the work of Goldstein [12] stands out in

the literature. Corrections to this model were proposed by Atassi [13] and subsequently he and

his coworkers (e.g. see [14]) succeeded in predicting unsteady aerodynamic calculations through

numerical procedures. These formulations and calculations are done through potential methods

and the resulting equations are nonconstant coefficient second order linear partial differential

equations. Calculations are accurate within the linearized limits. In certain cases, such as flat

plate air foils, the theory behind these equations is well understood. As a result, these potential



formulations have firm foundations. Recently several authors are beginning to solve linearized

Euler equations directly. It is not clear if there are any real advantages to these procedures.

It appears that the mathematical foundations do need careful work. Moreover, associated far

field boundary conditions consistent with the linearized equations require a careful study. This

is the other aspect this paper addresses.

Two-dimensional problems governed by any wave equation, unlike their one- or three-

dimensional counterparts, suffer severe slow decay rates under certain conditions. Whether

the problem is posed in the frequency domain or in the time domain, the problem of slow decay

rates occurs. For example, for a very low frequency problem it would appear from a concep-

tual point of view that the terms multiplied by the frequencies could be dropped to consider a

problem in the absence of those corresponding terms. A typical situation is the problem gov-

erned by the Helmholtz equation, where reduction is the Laplace equation. Similar arguments

hold for the time dependent wave equation. If in the long time there is a steady state, the

analogous situation is to consider the steady state part. These discussions imply that there is

interplay between low frequencies and long time behavior. The researchers who looked at these

questions considered only isolated issues. In this paper an attempt has been made to connect

the theoretical issues behind these problems to aerodynamic problems.

In section two we discuss the behavior of the solution of reduced wave equations in exterior

regions. In this section we point out the potential problems in considering the zero frequency

limit or the steady state problems. Moreover, we show the proper form of the boundary

operators one should consider in the prescription of radiation boundary conditions. In section

three we consider a true time dependent model in which the corresponding corrections to the

radiation boundary operator are discussed. Here we include available well-known procedures

that are commonly used in the computational fluid dynamic literature to show these corrections

in perspective. Numerical solutions are shown to establish the validity of the theory.

Finally in section four we provide extension of the theory proposed in section 3 for the treat-

ment in the far field. This treatment should hold for the Euler equations and their linearized

versions. The corresponding numerical treatment will be discussed elsewhere.

2 Low frequency behavior of the reduced wave equation

Here we show a potential problem that arises with the reduced wave equation. In particular

we shall discuss the low frequency behavior that arises from problems with Dirichlet boundary



conditions.Thereasonfor discussingsuchbehavioris to establishthe slowdecayrates of the

two dimensional wave equation. These decay rates play an important role in the construction

of approximate boundary operators that are vital to the constructions of solutions. At the

outset we want to emphasize that these decay rates and associated problems only apply to the

two-dimensional wave and wave-llke equations.

We shall begin with the two-dimensional problem that will motivate the decay rates in

question. We consider a classical soft obstacle problem in two dimensions. In particular we

consider the following boundary value problem (Pk):

Au + k2u = 0 in f_e c T't2

u = g_ on r

(u,. - iku) = 0 r = V/_ + y2lim
_''--400

(i)

where f_e is the exterior to a bounded region _2 and r is its boundary. For the soft obstacle

problem gk = -ui,_ where ui,_ is the incident field.

The key question we address is what happens to the problem as k _ 0? To discuss this

issue we consider an appropriate zero frequency problem. This problem is constructed in such a

way that it preserves the zero frequency behavior on the equation and the boundary condition

on r. However_ the radiation condition at infinity is replaced by a boundedness condition at

infinity and is as follows:

Av = 0 inf_¢ CTZ 2

v = go on r

[vI _< M or v_AlogIf.laslgl--r--,_.

(2)

We call this problem to be (P0). It has been shown in the literature [10], [8] that in the

limit as k _ 0 the solution of (Pk) approaches the solution of (P0). However, this limit process

is a slow one and we want to make a case for it as it has everything to do with constructions

of boundary conditions for numerical simulations. Before we introduce the results let us focus

our attention on the structure of vine = -go. The choice of vine depends on uin¢. Examples are

as follows:

a) ui_¢= ei_ (plane wave)

Then the corresponding zero frequency limit is readily seen and is Vine ----I



b) "me-- -  ol) (shg   o ce)
Then the corresponding zero frequency limit is taken as the principal leading spatial singularity

Vine = _logla?-_0[. A discussion of this choice is seen in [7] and is motivated by several issues

including an obvious one: the asymptotic behavior of the Hankel function for Small arguments.

Now we state some of the key results:

a) (Crude) : u --* v as k --* 0

b) (Sharp) : -- v +

c) (Sharper): u = v + _ + O(k2(ink) 2)
--CO

The results in a) are due to an old work of MacCamy [8]. The results in b) are later

observed by many others, namely Muravei [10], Werner [16] and Kress [17] which indicate the

slow decay rates. The result c) is due to the author and his coworkers and the results appear in

[9], [6] and [7]. To motivate the implication of these results first let us demonstrate the effect

of these decays numerically. For this purpose we have taken a plane wave incident with unit

amplitude. It is easily seen from problem (P0) that the solution is vs = -1 and the total field

v = Vine + vs = 0. This solution is compared with the total solution for the nonzero frequency

problem (Pk) with u = uin¢ + us. Figure 1 shows magnitude of u for the frequencies 10 -z,

10 -s and 10 -4 respectively. Clearly one can see that even for these very low frequencies the

solution does not approach the correct low frequency limit of zero rapidly. The frequency or

the wave number approaching zero corresponds to the long time limit of the solution to the

corresponding time dependent wave propagation problem. In particular for moderate times or

frequency one cannot expect to use any properties of the steady state problem and in this case

the solution of the zero frequency problem (Po). This message has serious impacts on unsteady

flow computations.

In light of the above discussion, we would like to outline a correction to this zero frequency

computation. These ideas will later be transferred to an appropriate time domain problem and

at the end we shall propose ideas as to how to extend the theory to the Euler equations. In

particular we outline a theory that appears in [6], [7] to show the sharp result b) and the sharper

result c). The construction of these results involve potential theory. We use potential theoretic

representation for the solution. Specifically we use single layer potential representations. Let



u(a_) be the total field in (Pk), i.e.,

_(_) = _.o(_) + _,(_). (3)

Then, for the problem (Pk) the representation is as follows:

u(_.) = [ a(_Gk(_,ff) ds_ + ulnc(_),
JF

where

-i H(1)(kl__ _0I) (5)c_(_, f) -- 7

is the free space Green's function. The scattered field satisfies the Sommerfeld's radiation

condition due to this Green's function. One obtains a boundary integral equation for the

determination of a(_ that is defined on the boundary 1' using the boundary condition on r.

f_ _(_)a_(_,y')d._ + _,..(_): 0 ,_ e r (6)

A similar construction with the free space Green's function for the Laplace's equation is made

for the problem P0 noting that any representation of the solution is subject to an arbitrary

f

with

fr.(_) ds¢= -i (8)
where

x (logiC-y]). (9)

The condition described by equation (8) takes care of the arbitrariness of the constant c and

the boundedness of the solution at infinity. Again demanding the boundary condition on r we

arrive at the boundary integral equation

frp(g)Go(_,ff)ds _ +vi,_({) +c =0, _ 6 r. (10)

Thus the complete solutionof (P0)isdetermined through solvingthe equationsof the pairof

equations(8) and (10)Simultaneously.The key idea ofthe low frequencycorrectionrelieson

relatinga and # with appropriatelow frequencycorrections.Severalofthe quantitiesthatarise

can be related to the asymptotic formula for small values of z

¥ _ (log() +-_) - _ + o(_'- in_) 01)

constant.



where

= .5772156649.•. (12)

isthe Euler constant.Using thisexpansioninequation(6)we obtaina relatedintegralequation

in the followingform

f o"(y_Go(_,_)dsy + fl([ a (_)dsy T i) T v{_(£)= 0 (13)
JF dr"

where

=_(log()+_) 4"

Successive approximation by considering equation (4) and (13) yields ([6])

Further it has been shown in [6] that

(_) =

a- +O(k 2 lnk).

(14)

(15)

ck(_) _ e r (16)
_(_) +/_-co '

where fo(£) and the real constant co satisfy the following equations :

frfo(_) Go(Z, _ ds_7 + = 0 (17)¢0

rfo(y-" ) dsy = 1. (18)

Use of this result leads to the results in c). In particular two low frequency corrections can

be constructed. One is for k[£[ small (the results in [6]) and another one that is proposed in

the recent paper [7] for k small globally. The emphasis of the latter corrections axe to include

the low frequency corrections both in the near field as well as the far field. Those corrections

are as follows

= + + + (19)

which is the one that appears in [6].

fr _" (f) Gk(_, g) ds_7 + u_nc(_) (20)w(_)

This is the improved result that is valid both in the near field and in the far field. To illustrate

the effectiveness of these approximations we solved for u, the full solution of Helmholtz equation,



andthe approximationst_ and w for the case of a circular obstacle and a plane wave. All the

results were calculated numerically. Figures 2 and 3 show the effect of these corrections as

predicted by the theory for reduced frequencies k = 10 -2 and k = 10 -4 respectively.

The important information that is related to the computations of exterior aerodynamic

calculations is as follows- Suppose one wants to compute solutions within a truncated region

with the aid of an artificial boundary. Then for the well-posedness of the problem within the

truncated region one must have normal derivatives prescribed on the boundary in an appro-

priate form. For example one can realize this form by considering the Sommerfeld's radiation

condition. The operator that we propose is

_. Ov _. }0n (z)= On (z) + - Co fr f°(Y) OoGn° dsf + O( k2(l°g k)2) (21)

A similar relation holds if one is interested in specifying the normal derivative of the scattered

field only. In this case u will be replaced by u, and v will be replaced by vo. The importance of

tiffs condition is that in the low frequency llmits it is important to correct the zero frequency

operator with the logarithmic terms which play a significant role. This will be evident in the

next section where we shall deal with a true time dependent situation and the structure of

these logarithmic corrections in the frequency translates to logarithmic corrections in time in

the artificial boundary operators. These constructions were made from a computational point

of view but are consistent with the abstract theoretical results posed in [10].

A point of comfort and warning is that these corrections are not necessary in the case of

a hard obstacle. That is, the Dirichlet condition on r is replaced with a Neumann condition

-_n = -0_. It can be shown that the decay rates are much faster for this condition and

does not involve any logarithmic corrections. Potential formulations that were introduced by

Goldstein [12] and Atassi [13] fall into this category. As a result the computational results

presented in [14] do behave well in the low frequency limits. However, issues dealing with the

time dependent problems, in particular problems governed by the Euler equations, are in need

of further theoretical backing. We show a preliminary study in the next section.

3 Implications to a True Time Dependent Model

In this section we motivate a time dependent model problem that is used to indicate potential

troubles in two dimensions. Specifically, we shall focus our attention on construction of ab-

sorbing boundary conditions on artificial boundaries. The model problem that we propose is



governedby the wave equation exterior to a circle of radius r0 with a time dependent data on r0

which asymptotes to a constant value as t _ o0. For computational purposes we truncate the

infinite region by an artificial boundary at r = R. At this boundary there is an exact condition

(in the mathematical sense) that takes care of the effects of extending the region to infinity.

The model problem is as follows:

1
uu -- u,_ + -u_, ro < r < R (22)

u(,.o,t)= 1+ g(t) (23)

ur = _-(u) at, = R. (24)

_(_,0)-- _,(_,0)= 0 _o< _ < R (25)

g(t)= o(_) as t--. oo (26/

This model is designed to have the long time behavior of a solution u _ 0 as t --, oo. The

operator _r(u) is the exact operator known only theoretically. It has a well defined structure

in the transformed domain which we discuss now. The initial values suggest that it is easier to

work with the Laplace transforms. Doing so one obtains

1
s2U = u,, + -_, r0 < r < R (27)

_(r; s) : # (28)

s) _-(_) (29)_-:(R; =

The operator _ in the transformed space is readily verified by considering the solution of

equation (2.27) in the exterior region and is as follows:

_K_(_R)
_(u) - g0(sR) _ (30)

Available well-known boundary condition procedures rely on obtaining approximations of the

symbol or the ratios of the modified Bessel fucnctions. Here we provide some of these approxi-

mations and operators. Let B be the approximation of 5r. Then

1. Engquist and Halpern [11]

= -_ (31)

9



which is the crudest approximation of _. Then the approximate boundary operator in the

transformed space is

o_ _ _(_) (32)

Inversion of the transform results in a time domain operator

Ou Ou

o_ + g/: 0 (33)

The important part to consider here is the error in the approximation (2.31) using asymptotic

properties of the modified Bessel functions for small and large arguments. This in turn will

suggest the order of the error in real time. Doing so we obtain

_ as s --, c_ (34)7-B= o(_) ass--.0

2. Bayliss and Turkel [4] first order

Analogous list in this are boundary operators in the transform domain

1
B -- -s- --

2R

the boundary operator in the time domain

and the errors behave like

Ou Ou 1

Or +0/+_u=o

1

0(;) as s -_ oo
5r-B=

-_R ass_0

3. Bayliss and Turkel [4] second order

Here the boundary operator in the transform domain is

3a 3

B=
8+-_

and its translation in the time domain is

(_0 0 5 )(0 0 1or +N+ _R _+N+2R) '_

The errors in this case are

_=- B = { o(_)__3

=0

(35)

(36)

(37)

(38)

(39)

(4o)

10



4. Hagstrom [5] (part of current study)

The boundary operator in the transform domain is

s+6

and its translation in the time domain is

0 Ou 0 1 Ou

(-_ + O(N) + (-_ + yR + e) N

Finally the errors behave like

(41)

=o (42)

o(1) ass_ oo7-B= 0(_,,) ass_O (43)

We propose to correct the errors in the low frequency limit, i.e., the long time behavior in

constructions of these operators. This is the punch line of this paper and again we emphasize

that this idea is crucial ff one were to compute directly time dependent problems. For this

purpose let us observe that ff one were to include the next order correction to the asymptotics

for small s, we obtain the following properties:

{ -(,+_)_ as s-* oo_,. ,_' (44)
1

-Rh--_(_-}) u as s --, 0

where 7 is the Euler's constant. Now consider the case where

u _ 1 as t --* oo (45)

which has the behavior in the transform domain

1
---* - as s _ 0 (46)

$

In particular
1

u" " Rsln(ReV_) as s -, O. (47)

To obtain the corrected behavior in the time domain we look for a function G(t) so that

1

£{G(t)u} = - Rsln(Re_i) as s --* O. (48)

11



Construction of such a function will be found in [3]. The key result here is Proposition:

1
G(t) (49)

R[in + D]

where D is a constant such that D > e2. The proposed boundary operator here has the form

We compare this operator with the operator in category 4. When 6 is a constant and G = 0

one retrieves this operator. The function 6(t) is determined by matching the next asymptotic

correction in space (i.e., 0 (_)R ). This yields

1 1
t_- 4R 1- 2Re" (51)

The details of these calculations will be found in [3].

We demonstrate the effect of this proposition through a numerical simulation. For this

simulation a specific choice of g(t) is considered. It is modeled in such a way that it has

oscillatory decay. The form is

cos 2_rt

u(r0, t) = 1 1 + t 2 t > 0. (52)

Moreover, this problem does not have an explicit analytic solution. Therefore, the numerical

simulation and comparison is made by doing the calculation in a large domain r0 < r < R

with r0 = 1 and R = 252. The value of R is chosen in such a way that the waves do not hit

this artificial boundary so that no reflection in the computational domain is introduced in the

time period (500 nondimensional units). The specific scheme that is used for computation is an

explicit second order scheme (both in time and space). The graphs and associated results are

given in Figure 4. In addition the results that are plotted in the figure represent the magnitude

of error in time at a fixed point within the computational domain. This point in this case is

chosen to be r = 2. The results are consistent with the predicted theory. In particular the

theory predicts that the results of Engquist and Halpern [11] have the largest error for short

times and is demonstrated in the graph. However, for large times this error tends to decay but

only at a very short rate which is consistent with the key emphasis of this paper. The second and

third graphs are due to the computations using the Bayliss and Turkel [4] boundary operators

of orders one and two respectively. Clearly one sees smaller errors at short times and the errors

12



havea tendency of growing larger (they do indeed though not shown here). Finally the last

curve is the current proposal [3] and has errors less than a percent for all times and it behaves

well for short, long and in between times. These constructions are a guide to an abbreviated

proposal that is given for aerodynamic problems, specifically for the Euler equations.

4 Extensions to Aerodynamics

Here we extend the ideas presented in the earlier sections to aerodynamic problems governed

by the Euler equations. A similar analysis can be done for the viscous flows governed by the

Navier-Stokes equations which is not presented here. It should be noted that to extend the

analysis of the model problem it is vital to have a linear problem. Clearly the Euler equations

or the Navier-Stokes equations are not linear. However, the analysis which we seek is for the

far field boundary operators and is reasonable to assume linearity of the equations there. The

form of the Euler equations we use here is as follows:

Op
O_ + div(p_u) = 0 (53)

Du
P Dt _ p (54)

De
PDt + pdivu = 0 (55)

There are a variety of ways to linearize these equations about a state. In this case we consider

the state at infinity. Since we are dealing with a system of first order equations, additional

boundary conditions are required according to the hyperbolic theory. The treatments that are

presented here are for subsonic inflow as well as outflow. Along these lines Gustafsson [18]

proposed a linearization with the variables q = divu, the divergence of the velocity field, and

the entropy S = In (_). Noting that w = curlu the linearized equations look llke

05 OS
0_ + _oo0_ = 0 (56)

ot + '_ o_ = 0 (57)

13



In the last twoequations,eliminationof q yields a convective wave equation for the pressure

(0 0) 2 2 /Xp. (59)

This is the place where the connection to our earlier analysis holds. The treatment of boundary

conditions for the pressure is subject to the structure of the solutions of this equation. Before

we proceed to discuss these equations we point out that the linearized equations for the entropy

and vorticity suggest that at points of inflow one must specify S and w. These are dictated by

the hyperbolic theory as well.

Now we set up an appropriate initial boundary value problem that will be used to extend

the analysis in the previous section. The model to be considered here is:

2 C 2 2

¢=¢t--0 att--0

where ¢ -- p - p_. Taking the Laplace transform with respect to t yields:

2-- 2-- 2--s2_ + 2u_s _ + u£¢_ c_¢_x +-- C_¢_.

Now we make a dependent variable change from ¢ to ¢ in the form

(60)

(61)

This yields the following calculations:

(62)

Cz = Xe_:_¢ + e_¢x (64)

_ ___2e_¢ + 2_e_¢_ + e_¢_ (65)

_ = e_¢_ (66)

Substituting (64-66) in the transformed equation we obtain

2_2¢+ 2u_¢ + 2v_¢x = (eL - u_)(¢_ + 2_¢_ + _¢) + c_¢_. (67)

We pick the free parameter X (to eliminate the first derivative term) so that

_ u_ (68)
c_ - u£

14

: e_¢. (63)



The remaining terms involving X yield

2U_s 28_+ 2uoos_- (cl- ui)_2 8'-+
ci-u£

Uis _ 82CI
=s2+

cl - v£ cl - v_
Thus the equation for ¢ becomes

U2oo $2

ci-u_

-- __m 2_"cl _= (cl-ui)¢..+ coo¢_
ci-u£ _

or

Let

8 2

ci-u_
¢ = (I - 2¢II)¢zz+ ¢_.

8
3-

;r

v/1- M 2gO

_--y.

Then the equation for _bbecomes

¢_ + ¢_ = $2¢.

Radially symmetric solutions satisfy

g_(_) ¢
¢_ = s K0(5_) "

Like in our wave equation calculations for _ large we have

_+6 ¢

where

= +_2_- 1-:_/oo +y2=r 1-Moo

_ r _I - M_o sin 2 8.
V_ : Moo

Therefore the chain rule yields

+ sin20

0¢ V/1-MI O_

O_ 41 - M_ sin s 0 Or

(69)

(70)

(71)

(72)

(73)

(74)

(75)

(76)

(77)

(78)

(79)

15



Note that

= _e -,_ = _e ->._¢o,o.

Therefore

Noting

and letting H(O) -
J1-M_ ,m2(o)

)= _; - _cosO_ e-_°°'°.

Uoos - Moo __

we see that

Therefore

where

m

o¢

o_ + _ + _s(o)) _= _ (s(o) -f4

(80)

(81)

(82)

(83)

(84)

(85)

¢I - M_ sin 2 0 - Moo cos e
8(0) (80)

Upon simplification we propose a boundary operator for the difference of pressure ¢ = p - Poo

(87)

(88)

in the form

-d_ + 5 ¢,. = - O--t+ -_ + gs(e) . d

where d = v/C_ - U_. Again one can establish the form of G as

a(o,t) = H(O)

Corrections to O(_) yield in this case

5 = 1 x/_- M_ 1 (89)

4R V_ _ M£ sin _ 0 1 - _RG"

In conclusion, this paper points out potential problems in computing solutions of Wave:like

equations in exterior regions. Remedy of the problems dictates logaxit_c correction terms in

posing radiation conditions. An extension is proposed to the Euler equations in the far field.

16



References

[1] B. Engquist and A. Majda. Absorbing Boundary Conditions for the Neumerical Simulation

of Waves Math. Comp., Vol. 31, (1977), 629-651.

[2] Saul S. Abarbanel et. al. Secondary Frequencies in the Wake of a Circular Cylinder with

Vortex Shedding J. Fluid Mech., Vol. 225, (1991), 557-574.

[3] T.M. Hagstrom, S.I. Hariharan and R. C. MacCamy. Asymptotic Behaviors of Absorbing

Boundary Conditions, (in preparation)

[4] A. Bayliss and E. Turkel. Radiation Boundary Conditions for Wave-like Equations Comm.

Pure Appl. Math., 33, (1980), 707-725.

[5] T. Hagstrom. Consistency and Convergence for Numerical Radiation Conditions, ICOMP

Report No. 90-21, NASA TM-103262, (1990).

[6] S.I. Hariharan and R. C. MacCamy. Low Frequency Acoustic and Electromagnetic Scatter-

ing, AppI. _Num. Math. Vol. 2., (1986), 29-35.

[7] S.I. Hariharan, R.C. MacCamy and C. Muralikrishna. Low Frequency Corrections for the

Reduced Wave Equation, to appear.

[8] R.C. MacCamy. Low Frequency Acoustic Oscillations, Quant. AppI. Math., Vol. 23, (1965),

247-256.

[9] S.I. Hariharan. Inverse Scattering for an Exterior Dirichlet Problem, Quant. Appl. Math.,

No. 2, (1982), 273-286.

[10] L.A. Muravei. On the Asymptotic Behavior for Large Values of Time, of Solutions of

Exterior Boundary Value Problems for the Wave Equation with Two Space Variables, Math.

USSR Sbornik, Voi. 35, No. 3, (1979), 377-423.

[11] B. Engquist and L. Halpern. Far Field Boundary Conditions for Computation over Long

Time, AppI. Numer. Math., Vol. 4, No. 1 (1988), 21-25.

[12] M.E. Goldstein. Unsteady Vortical and Entropic Distortions of Potential Flows Round

Arbitrary Obstacles, J. Fluid Mech., Vol. 89, (1978), 433-468.

17



[13] II.M. Atassi. Unsteady Vortical Disturbances Around Bodies, Proceedings of the Tenth

U.S. National Congress of Applied Mechanics, J.P. Lamb, Ed., ASME, (1986), 475-484.

[14] J.R. Scott and H.M. Atassi. Numerical Solution of Periodic Vortical Flows about a Thin

Airfoil, AIAA Paper 89-1691.

[15] Eds. A. Dervieux, Brian Van Leer, J. Periaux and A. Rizzi. Numerical Simulation of

Compressible Euler Flows: a GAMM Workshop, Braunschweig: Vieweg (1989).

[16] P. Werner. Low Frequency Asymptotics for the Reduced Wave Equation in Two Dimen-

sional Exterior Spaces, Math. Meth. in Appt. Sci., Vol. 8, (1986) 134-156.

[17] R. Kress. On the Low Wave Asymptotics for the Two-dimensional Exterior Dirichlet

Problem for the Reduced Wave Equation_ Math. Meth. in Appl. Sci., Vol. 9, (1987), 335-341.

[18] B. Gustafsson. Far Field Boundary Conditions for Time Dependent Hyperbolic Problems,

SIAM J. Sci. Star. Comp., 9, (1988), 812-828.

18



_>
0

@
c-
C)

CL

c-

-0

c-

c-
<C

k_

0
b_

c-
O

C_

CY
t,l

N

o
c-

E

0

c-
O

°--

0

C,J

l

I

I

l

I

I

I

t

I

I

I

I

t

I

I

I

I

I

|

I

t

|

I

I

I

1

I

I

t

I i '

I
I
!
I
!
I

1

I

I

l

"'i I r i

!
I
1

i
i
1
I
!
I
I
I
I
I
I
!
I
|
I

I I

"-" 0 0

H II II

, I
I

I
I

i I

l I

I
t
I
I
I
|
t
t
l
l
I
l
t
l
l
l
l

I _ I , I , - --_ -"" "r"

0 _ _Z> _'." (',1

•-- o o o
epnl!ugobl

0

0
o

0

0
0
00

o
o
o
(,t3

(..)
c'-
0

E3

o
<5
0

0

0
0
c_

0

0
0

0

L

=I-"

I'

19



(/)
I---
__J
SD ?

v

(/) o
h..J

I....1_u..i
o <>

Pr"
< <
0._
o
O

,r---

I

I

\

\
\
\
\
\
\
\
\

/

y.,,,,j I i

4"
(1J GJ
thS r ,_.

:D B: ,"-',
E_ LL.] _J
F- Z 0

i

I 1 :

i'I l

\
\

\\ ' .

O
,-- d

SNOIInIOS _.-iO3GnilNOV_I

O

O

O

O
O
O

O

C3
0
CO

0
d
C3
CO

C3

0
C3

0
d
C3
CN

0

0

1,1
(D
"7
4".

F-
L"I
c_3

q_J

.r--

2O



GO
F--

!

GO
LJ
fy i..

LL

Z _

I'Y n

O_
o

©
O

o
o3
O

I i

Ill _

fy LLJ .._J
F- ZO

!

' I
!

, I
, I

o o o

d d d

SNOI±Nqos 40 3GN/INOV_

o
o

O

O
o
o

O
o
o
o3

o
o
O

o
0
0

0
0
o
o4

o
(5

0
Z

,4

-r-

21



0

CO

co

Q

I
!

I

\
\
\

\

\

\
\

\

I _ 1 i

._o J,.._,,E

22

I
I

I
!

I
!

I
!

I

I

I

1" ':=;

I
!

I
!

I
!

\
\ i

"1\ \

or-

Lt,_





I Form ApprovedREPORT DOCUMENTATION PAGE OMe No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, includingthe time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information Send comments regarding this burden estimate or any other aspect of this
collection of information, includingsuggestions for reducing this burden, to Washington Headquarters Services, Directoratefor information Operations and Reports,1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202 4302, and 1o the Office of Management and Budget, Paperwork ReductionProject (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT I"ypnE"AND DATES COVERED

March 1992 Technical Memorandum

4. TITLE AND SUBTITLE

I_x)ng Time Behavior of Unsteady Flow Computations

6- AUTHOR(S)

S.I. Hariharan

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration

Lewis Research Center

Cleveland, Ohio 44135-3191

9. SPONSORING/MONITORING AGENCY NAMES(S) AND ADDRESS(ES)

National Aeronautics and Space Administration

Washington, D.C. 20546-0001

5. FUNDING NUMBERS

WU-505-62-21

8. PERFORMING ORGANIZATION

REPORT NUMBER

E-6912

10. SPONSORING/MONITORING
AGENCY REPORTNUMBER

NASA TM- 105584

I COMP-92-04

11. SUPPLEMENTARY NOTES

S.]. Hariharan, University of Akron, Dept. of Mathematical Sciences, Akron, Ohio 44325 and Institute for Computational

Mechanics in Propulsion, Lewis Research Center (work funded under NASA Cooperative Agreement NCC3-233). 1COMP

Program Director, Louis A. Povinelti, (216) 433-5818.

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified - Unlimited

Subject Category 34

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

This paper addresses a specific issue of time accuracy in the calculations of external aerodynamic problems. The class of

problems that is discussed here consists of inviscid compressible subsonic flows. These problems are inherently governed by a

convective equation. This is readily seen by linearizing the Euler equation which results in a convective wave equation for the

pressure. A key mathematical issue that is not well understood in literature for these problems is the long time behavior of the

solution. This is an imporlanl aspect if one desires transient calculations of problems governed by the Euler equations or its

derivatives such as the smalI disturbance equations or the potential formulations of the gust problem. In particular, difficulties

arise fl)r two-dimensional problems. In two dimensions the time decay rate of solutions of the wave equation is known to be

rather slow. This applies to the convective wave equation as well. The consequences are rather severe if one focuses on the time

accuracy of solutions of problems governed by the Euler equations. ]n concert with the above mentioned problem, exterior flows

require proper modeling of boundary conditions. In particular, computations of these flow problems require truncation of infinite

regions into finite regions with the aid of artificial boundaries. On these boundaries one must impose boundary conditions that

are consistent with the physics as well as guarantee consistency with the original problem posed in the unbounded region.

Moreover, these boundary conditions must have accuracy in time as well as space. Some of the well-known procedures do

address the issues of spatial accuracy and have remedy for these conditions. Unfortunately, these procedures do not address the

lime accuracies, which are crucial fi)r the transient problems. Our treatment is discussed in detail and examples are presented to

verify the results.

14. SUBJECT TERMS

Compressible flows; Convective wave equation; Boundary conditions

17. SECURITY CLASSIFICATION

OF REPORT

Unclassified

18. r SECURITY CLASSIFICATION

OF THIS PAGE

Unclassified

NSN 7540-01-280-5500

19. SECURITY CLASSIFICATION

OF ABSTRACT

Unclassified

15. NUMBER OF PAGES

24

16. PRICE CODE

A03

20. LIMITATION OF ABSTRACT

Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. Z39-18
298-1 O2


